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 ملخص البحث

. فى هذا البحث يتم دراسة التصميم أهمية أكثر مجالات التصميم البنائىيعتبر التصميم التوبولوجى الأمثل من         

للأجزاء الميكانيكية باستخدام طريقة خطوط التقارب المتحركة. هذه  مثل للحصول على أقل مطاوعةالتوبولوجى الأ

لات الهدف معاد ستطيع التعامل مع أى نوع منالطريقة تعتبر من طرق التصميم الأمثل الشاملة والمرنة، حيث انها ت

ط التقارب الدنيا والقصوى على عملية تأثير تغيير خطو فى هذا البحث تم دراسة ى عدد من معادلات القيود.وأ

كما تم تنفيذ لحصول على التصميم الأمثل بصورة ثابتة وفى أقل وقت ممكن. لتقارب للتصميم الأمثل بهدف اا

العارضة المثبتة من طرفين سواء كانت فى و ل العارضة المثبتة من طرف واحدالتصميم الأمثل لنماذج مختلفة مث

خطوط التقارب المتحركة وطرق مختلفة ية الأبعاد. وأيضا تم عمل مقارنة بين طريقة ثلاثمجسمة واحد أو مستوى 

و طريقة المعايير المثلى وطريقة الخلايا ذاتية  للتصميم التوبولوجى الأمثل مثل طريقة البرمجة التربيعية المتعاقبة

 .والشكل النهائىللتصميم والوقت المستهلك لكل طريقة  نة ، طبقا لقيمة المطاوعةالحركة الهجي

Abstract 

         Topology optimization approach is considered among the most interesting fields of structural 

optimization. In this paper topology optimization for compliance minimization using method of moving 

asymptotes MMA is presented. This method is considered as a general and flexible optimization method, 

where it can handle any kind of objective function and any number of constraints. The effect of changing 

the lower and upper asymptotes on the optimization process convergence is studied for seeking the 

demanded convergence with more stability and minimum time as possible. Topology optimization of 

different models such as a cantilever beam and simply supported beam for two and three dimensional 

structure is accomplished. Also a comparison between Method of Moving Asymptotes (MMA) and 

different methods such as Sequential Quadratic Programming (SQP), Optimality Criteria (OC), and 

Hybrid Cellular Automata (HCA) is accomplished according to the compliance value, time consumed and 

the resulted topological shape. 

NOMENCLATURE 
𝒙𝒋: Design variable j 

𝒙𝒋: Lower bound of design variable 

𝒙�̅�: Upper bound of design variable 

𝐏 : Penalization factor 

𝑳𝒋: Lower moving asymptote 

𝑼𝒋: Upper moving asymptote 

C : Compliance 

ke : Element stiffness matrix 

𝐮𝐞 : Element displacement vector 

𝝆𝒊 : Element density 

𝝆𝟎 : Initial density 

𝑬𝒊 : Element elasticity 

𝑬𝟎 : The base material elasticity modulus 

vfrac: Volume fraction 

𝐕𝟎 : Initial volume 

nelx : horizontal elements number  

nely : vertical elements number 

ν: Poisson's ratio 
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F: Applied Force on model 

U: Global displacement 

𝐚𝐬𝐲𝐢𝐧𝐭: Initial asymptotes value 

𝒂𝒔𝒚𝒅𝒆𝒄𝒓: Decreased value of asymptotes 

𝒂𝒔𝒚𝒊𝒏𝒄𝒓: Increased value of asymptotes 
𝝏�̂�

𝝏𝒙𝒊
: Average compliance sensitivity for element 

and its neighbors 

1. INTRODUCTION 
     Topology optimization approach is 

considered one of the most interesting 

fields of structural optimization. It is 

considered as a promising area that 

meets a great interest from mechanical 

designers and manufacturers. It is a 

relatively new but rapidly expanding 

research field. It also has important 

practical applications in automotive and 

aerospace industries. 

      Topology optimization strives to 

achieve the optimal distribution of 

material within finite volume design 

domain; which maximizes a certain 

mechanical performance under specified 

constraints. Its algorithms selectively 

remove and relocate the elements to 

achieve the optimum performance [1].  

It can provide a good configuration 

concept for the structure as a minimum 

compliance or maximum stiffness 

design.  

     The first paper on topology 

optimization was published over a 

century ago by the versatile Australian 

inventor Michelle (1904) who derived 

optimality criteria for the least weight 

layout of trusses, see [2]. Bendsøe and 

Kikuchi were presented the landmark 

paper that had introduced most popular 

numerical FE-based topology 

optimization method [3]. Bendsøe had 

followed that with the method of SIMP 

which is considered the most popular 

approach in topology optimization [4]. 

    Ole Sigmund (2001) developed a 

Matlab code for topology optimization 

based on minimizing compliance, 

mainly using optimality criteria 

approach that depends on the sensitivity 

of the objective function [5]. Also there 

are some methods that can be considered 

as numerical methods such as, 

sequential linear programming, 

sequential quadratic programming, and 

method of moving asymptotes [6] that 

can be adopted for topology 

optimization. 

     In this paper, the MMA method is 

applied to different 2D and 3D models 

(with different number of elements and 

boundary conditions) as it will be 

discussed later in section 5&7. A 

comparison between this method and 

other methods such as SQP, OC 

approach [5], and HCA method [1] is 

presented in section 8. 

2. METHOD OF MOVING 

ASYMPTOTES 
     The ideal method for structural 

optimization should be flexible, general, 

and able to handle not only element size 

as design variables, but also other 

variables such as shape and material 

orientation angles. It should be able to 

handle all kinds of constraints. MMA 

method can handle all of these problems 

in addition to general non-linear 

programming problems. Moreover it is 

easy to implement and use. The method 

of moving asymptotes is a new method 

for structural optimization that is based 

on a special type of convex 

approximation [6]. 

     It is a common approach to 

mathematical programming method for 

non-linear optimization problems to 

formulate a local model at an iteration 

point. This local model approximates the 

original one at the given iteration point 

but is easier to solve. Classical methods 

like sequential quadratic programming 
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use such local models. But with respect 

to the large number of design variables, 

the use of SQP methods and solving the 

local models is very costly if not even 

impossible, due to the fact that gathering 

second order information for the 

approximation of the Hessian could be 

an insuperable task [7]. 

    Consider a structural optimization 

problem of the following form: 

 P: min            𝑓0(𝐱)      (𝐱 ∈ 𝑅
𝑛)      (1) 

S. t.:  𝑓𝑖(𝐱) ≤ 𝑓�̂�,    𝑓𝑜𝑟 𝑖 = 1,… ,𝑚  (2) 

𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑥�̅�    𝑓𝑜𝑟 𝑗 = 1,… , 𝑛     (3) 
Where 𝐱 = (𝑥1, …… , 𝑥𝑛)

𝑇 is the vector 

of design variables; 𝑓0(𝑥) is the 

objective function; 𝑓𝑖(𝑥) ≤ 𝑓�̂�,  is the 

behavior constraints;  𝑥𝑗 and  𝑥𝑗are 

given upper and lower bounds. 

    The method is interpreted in brief that 

each 𝑓𝑖
(𝑘)

, is obtained by a linearization 

of 𝑓𝑖 in variables of the type   

1 (𝑥𝑗 − 𝐿𝑗)⁄  or 1 (𝑈𝑗 − 𝑥𝑗)⁄   dependent 

on the signs of derivatives of  𝑓𝑖 at  𝐱(𝑘), 
where k is the current iteration. The 

values of the parameters 𝐿𝑗 and 𝑈𝑗 are 

normally changed between the 

iterations, and we will sometimes refer 

to  𝐿𝑗 and 𝑈𝑗 as "Moving Asymptotes". 

For more details on this method, see [6]. 

3. TOPOLOGY 

OPTIMIZATION USING 

MMA 
    MMA algorithm that was presented 

by Krister Svanberg and written with 

Matlab is used in this section, see [8].  

At the beginning, it is important to 

define the general equations of topology 

optimization for minimizing the 

compliance is conjunction with Solid 

Isotropic Material with Penalization 

approach (SIMP) that was presented by 

Bendsøe [4]. This approach proposed 

that the material properties are assumed 

constant within each element in the 

design domain. Normally, a continuous 

relative density is used as a design 

variable. The modulus of elasticity for 

each element 𝐸𝑖 is modeled as a function 

of the relative density xi  using a power 

law: 
𝜌𝑖(𝑥𝑖) = 𝜌0 𝑥𝑖 

𝐸𝑖(𝑥𝑖) = 𝐸0 𝑥𝑖
𝑝
     , (0 ≤ 𝑥𝑖 ≤ 1)    (4) 

Where, 𝜌𝑖 is element density; 𝜌0 is the 

initial density; 𝐸𝑖 is element elasticity; 

𝐸0 is the elastic modulus of the base 

material; and p is a penalization power. 

This power penalizes intermediate 

densities and drives the design to a black 

and white structure. To select the proper 

value of  p depend on Poisson's ratio ν, 

see Bendsøe and Sigmund Material 

interpolation schemes in topology 

optimization [9], 

P ≥ max {
2

1−ν
 ,

4

1−ν
}           (In 2D)   (5) 

P ≥ max {15
1−ν

7−5ν
,   
3

2

1−ν

1−2ν
}  (In 3D)  (6) 

Then the general equations can be 

written as, 
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 (7) 

where, U and F are the global 

displacement and force vectors, 

respectively; K is the global stiffness 

matrix, ue and ke are the element 

displacement vector and stiffness matrix, 

respectively, x is the vector of design 

variables which is relative density of 

each elements, 𝐱𝐦𝐢𝐧 is a vector of 

minimum relative densities (non-zero to 

avoid singularity) V(x) and V0 is the 
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material volume and the initial volume 

respectively; where vfrac is the prescribed 

volume fraction. 

   If it is desired to optimize a 2D model, 

then the model will be descritized to 

horizontal elements number nelx, and 

vertical elements number nely as in the 

initial design in Fig. 1. Then the number 

of design variables that will be used, n 

equals to nelx*nely, also the number of 

constraints equations, m equals to 2 as in 

equation 7. 

 
Fig. 1. Initial design domain of half MBB beam 

     Using a Matlab 2D finite element 

analysis with the properties of model as 

shown in Table.1, the optimal topology 

design will be obtained as shown in Fig. 

2. 

 

Fig. 2. The resulted topology optimization of half 

MBB 30x20 element using MMA method 

     It is observed that with increasing the 

number of elements, the method will 

consume more time and it will be 

impractical. Consequently changing the 

range of lower and upper moving 

asymptotes (𝐿𝑗  , 𝑈𝑗) closer or far away 

from the design variables 𝑥𝑗, the 

convergence process can be achieved. 

More details on how to choose the 

moving asymptotes and how to generate 

strictly conservative or more linearly 

approximations can be found in [6]. This 

problem will be treated in next section. 

4. EFFECT OF LOWER 

AND UPPER MOVING 

ASYMPTOTES ON 

OPTIMIZATION 

CONVERGENCE 
    Since the method of moving 

asymptotes is a general method, so the 

asymptotes can be adopted to be suitable 

for seeking the demanded convergence 

of specific problems. A general 

(although heuristic) rule for how to 

change the values of Lj
(k)

 and Uj
(k)

 is the 

following: 

a) If the process tends to oscillate, then 

it needs to be stabilized. This 

stabilization may be accomplished by 

moving the asymptotes closer to the 

current iteration point. 

b) If, instead, the process is monotonic 

and slow, it needs to be relaxed. This 

may be accomplished by moving the 

asymptotes away from the current 

iteration point, See [6]. 

The default rules for updating the lower 

asymptotes Lj
(k)

 and the upper 

asymptotes Uj
(k)

 will be now explained. 

The first two iterations, when k =1 and k 

=2; will be: 

Table. 1. Design parameters for topology 

optimization of half MBB beam 

Properties Values 

Young's modulus (E) 1 N/mm2 

Poisson's ratio (ν) 0.3 

Force (F) 1 N 

SIMP factor (P) 3 

Volume fraction (vfrac) 0.5 

No. of elements (nelx*nely) 30*20 

Initial design variables  𝐱0 0.5 
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     𝐿𝑗
(𝑘)
 = 𝑥𝑗

(𝑘)
− 𝑎𝑠𝑦𝑖𝑛𝑡  (𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛) 

𝑈𝑗
(𝑘)
= 𝑥𝑗

(𝑘)
+ 𝑎𝑠𝑦𝑖𝑛𝑡  (𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛)       (8) 

In later iterations, when 𝑘 ≥ 3 

      𝐿𝑗
(𝑘)
= 𝑥𝑗

(𝑘)
− 𝛾𝑗

(𝑘)(𝑥𝑗
(𝑘−1) − 𝐿𝑗

(𝑘−1)) 

𝑈𝑗
(𝑘) = 𝑥𝑗

(𝑘) + 𝛾𝑗
(𝑘)(𝑈𝑗

(𝑘−1) − 𝑥𝑗
(𝑘−1))       (9) 

Where, 

𝛾𝑗
(𝑘)
=

{
 
 

 
 𝑎𝑠𝑦𝑑𝑒𝑐𝑟 , 𝑖𝑓(𝑥𝑗

(𝑘)
− 𝑥𝑗

(𝑘−1)
)(𝑥𝑗

(𝑘−1)
− 𝑥𝑗

(𝑘−2)
) < 0

𝑎𝑠𝑦𝑖𝑛𝑐𝑟 , 𝑖𝑓(𝑥𝑗
(𝑘)
− 𝑥𝑗

(𝑘−1)
)(𝑥𝑗

(𝑘−1)
− 𝑥𝑗

(𝑘−2)
) > 0

1 ,               𝑖𝑓(𝑥𝑗
(𝑘)
− 𝑥𝑗

(𝑘−1)
)(𝑥𝑗

(𝑘−1)
− 𝑥𝑗

(𝑘−2)
) = 0

  

(10) 

Where the default value of 𝒂𝒔𝒚𝒊𝒏𝒕 equals 

0.5, 𝒂𝒔𝒚𝒅𝒆𝒄𝒓 equals 0.7 and 𝒂𝒔𝒚𝒊𝒏𝒄𝒓 equals 

1.2, see [11]. It is also found that there 

are some rules that can be used in the 

sub-problem file in the MMA code, see 

[8]. That can be added to the previous 

asymptotes rules. These rules are: 

𝐿𝑗 𝑚𝑖𝑛
(𝑘)

= 𝑥𝑗
(𝑘)
− 𝑆𝑚𝑎𝑥  (𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛) 

𝐿𝑗 𝑚𝑎𝑥
(𝑘)

= 𝑥𝑗
(𝑘)
− 𝑆𝑚𝑖𝑛  (𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛) 

𝑈𝑗 𝑚𝑖𝑛
(𝑘)

= 𝑥𝑗
(𝑘)
+ 𝑆𝑚𝑖𝑛  (𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛) 

𝑈𝑗 𝑚𝑎𝑥
(𝑘)

= 𝑥𝑗
(𝑘)
+ 𝑆𝑚𝑎𝑥  (𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛) 

𝐿𝑗
(𝑘)
= max (𝐿𝑗

(𝑘), 𝐿𝑗 𝑚𝑖𝑛
(𝑘)

) 

𝐿𝑗
(𝑘)
= min (𝐿𝑗

(𝑘), 𝐿𝑗 𝑚𝑎𝑥
(𝑘)

) 

𝑈𝑗
(𝑘)
= min (𝑈𝑗

(𝑘), 𝑈𝑗 𝑚𝑎𝑥
(𝑘)

) 

𝑈𝑗
(𝑘)
= max (𝑈𝑗

(𝑘), 𝑈𝑗 𝑚𝑖𝑛
(𝑘)

)                 (11) 

Where the default values of  𝑺𝒎𝒂𝒙 and  

𝑺𝒎𝒊𝒏 is 10 and 0.01. These values can be 

changed to suit any optimization 

problem. 

   To illustrate the difference between 

topology optimization using different 

ranges of lower and upper asymptotes. 

An example of half MBB beam with 

20x10 elements is implemented with 

different values of 𝑺𝒎𝒂𝒙 and  𝑺𝒎𝒊𝒏  in 

equation (11) such as (100, 0.01) and 

(600, 0.06) for example. Fig. 3 shows 

the convergence of topology 

optimization process at first case which 

shows that the convergence is steady 

after 440 iteration number, with 

compliance C = 96.8030 N.mm. 

 

Fig. 3.  Convergence of 20x10 elements half MBB 

beam with 𝑺𝒎𝒂𝒙 and  𝑺𝒎𝒊𝒏 of 100 and 0.01. 

    Fig. 4 shows the optimization process 

at the second case and it indicates that 

there is no convergence (it finally 

oscillates between two values of 

compliance C= 99, C= 100) and does 

not introduce the optimum solution. 

 

Fig. 4 Divergence of 20x10 elements half MBB 

beam with 𝑺𝒎𝒂𝒙 and  𝑺𝒎𝒊𝒏  of 600 and 0.06. 

5.   TOPOLOGY 

OPTIMIZATION OF 

TWO DIMENSIONAL 

(2D) MODELS 

5.1. Cantilever Beam 

     The initial values that are introduced 

in Table.1 with a model 30x20 mm and 

the boundary conditions as shown in 
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Fig. 5 are used. The final topological 

optimum design is obtained as shown in 

Fig. 6 with a minimum compliance of 

36.76 N.mm while the compliance at the 

beginning equals to 154.87 N.mm and 

the volume fraction vfrac was 0.5 from 

the total volume. 

 

Fig. 5. Initial design of cantilever beam 30x20 

elements 

 

Fig. 6. Topology design of cantilever beam of 30x20 

elements 

    Topology optimization of a cantilever 

beam with different mesh size is 

summarized in Fig. 7 which shows that 

the finer mesh leads to a topological 

optimum design with less compliance 

and finer shape than courser mesh. 

Although it takes longer time, it has a 

finer shape with higher resolution and 

easy to determine the void and material 

areas. 
 

 
 

Fig. 7. Topology optimization for different mesh 

size for cantilever (a) 20x10 elements with 

compliance C=88.8544 (b) 40x20 elements 

C=69.0953 (c) 60x30 elements C=66.6591. (d) 80x40 

elements C=65.0711 (e) 100x50 elements C=65.1185 

(f) 120x60 elements C=64.9388 

5.2. Half MBB Beam 

    A topology optimization of MBB 

beam with different mesh size with the 

same initial design as shown in Fig. 1 

and initial design parameters as in 

Table.1 is illustrated in Fig. 8. Same 

conclusions are reached as in section 

5.1. 

 
Fig. 8. Topology optimization for different mesh 

size of half MBB (a) 20x10 elements with 
compliance C=96.9919 (b) 40x20 elements 

C=84.1450 (c) 60x30 elements C=81.3742 (d) 80x40 

elements C=80.0763 (e) 100x50 elements C=79.6268 

(f) 120x60 elements C=79.8129. 
 

6. IMPROVEMENT OF 

NUMERICAL 

INSTABILITIES 

    Using the mesh independency 

filtering developed by (Peterson and 

Sigmund 1998) [12], the filter modifies 

the design sensitivity of a specific 

element based on a weighted average of 
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the element sensitivities in a fixed 

neighborhood. 

Where the sensitivity of the objective 

function is found as: 

𝜕𝑐

𝜕𝑥𝑖
= −𝑝(𝑥𝑖)

𝑝−1𝑢𝑖
𝑇𝑘𝑖𝑢𝑖             (12) 

Modifying the element sensitivities 

using the mesh-independency filter to 

involve the effect of sensitivity of 

neighbors [5] is found as: 

𝜕�̂�

𝜕𝑥𝑖
=

1

𝑥𝑖∑ Ĥ𝑎
𝑁
𝑎=1

∑ Ĥ𝑎 𝑥𝑎 
𝑁
𝑎=1

𝜕𝑐

𝜕𝑥𝑎
     (13) 

Ĥ𝑎 = 𝑟𝑚𝑖𝑛 − 𝑑𝑖𝑠𝑡(𝑖, 𝑎) 

Where Ĥ𝑎 is the convolution operator 

(weight factor); and the operator 

𝑑𝑖𝑠𝑡(𝑖, 𝑎) is defined as the distance 

between center of element  𝑖 and center 

of element 𝑎. The convolution operator 

Ĥ𝑎 is zero outside the filter area. Effect 

of using mesh independency filter is 

shown in Fig. 9 which is a cantilever 

with mesh of 60x30 elements. 

 

Fig. 9. Difference between topological design (a) 

without mesh filtering and C= 64.6405. (b) with 

mesh filter and C= 66.6591. 

7. TOPOLOGY 

OPTIMIZATION OF 

THREE DIMENSIONAL 

(3D) MODELS 

7. 1.  3D Cantilever Beam 

    the method of moving asymptotes 

(MMA) is applied on three dimensional 

models, and using ANSYS finite 

element analysis with "Solid45" linear 

and isotropic solid element type. An 

interface between the ANSYS program 

and the MMA Matlab code is achieved. 

 
Fig. 10. 3D cantilever beam 20x10x8 elements (a) 

initial design (b) final topology optimization design 

Using a different mesh size (i.e. solid 

model of length*width*thickness, 

20x10x8) as shown in Fig. (10-a) where 

the initial design and boundary 

conditions (loads and DOF) is 

illustrated, and the final topological 

optimization design is shown in Fig. 

(10-b). Also Fig. 11 shows topological 

optimum design for the same initial 

design but with different mesh size of 

30x20x10. 

 
Fig. 11. Final topology optimization of 3D 

cantilever beam 30x20x10 elements. 

7. 2.  3D Half MBB Beam 

    The method of moving asymptotes is 

also applied on a three dimensional half 

MBB beam. Applying MMA algorithm 

on this model using a Matlab code 

written by Krister Svanberg and the 

finite element analysis using ANSYS 

program. With elements number 

20x10x8 as shown in Fig (12-a), as the 

initial design and boundary conditions 

(loads and DOF) is illustrated. The final 

topological optimization design is 

illustrated in Fig. (12-b), where the 
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compliance at first iteration is C= 63.09 

N.mm and at final optimum iteration 

became C= 11.57 N.mm. Also Fig. 13 

shows the topology optimization of half 

MBB beam but with number of elements 

of 30x20x10, the compliance of this 

example at the first iteration was C= 

42.91 N.mm and at final iteration 

becomes C= 6.81 at the same volume 

fraction vfrac = 0.5. 

 
Fig. 12.  3D MBB beam 20x10x8 elements (a) initial 

design (b) final topology optimization design 

 
Fig. 13 Final topology optimization of 3D half MBB 

beam 30x20x10 elements 

8.   COMPARISON 

BETWEEN MMA, SQP, 

OC, AND HCA 

METHODS 

     In this section, a comparison between 

MMA method and different methods 

such as SQP, OC used in [5] and HCA 

with proportional integral derivative 

(PID) control rule [1] presented by 

Tovar et al. is accomplished. This 

comparison is achieved according to the 

compliance values, the time consumed 

and the resulted topological shape in 

each method. 

    All topology optimization methods 

use the same initial design and the same 

conditions in order to achieve a fair 

comparison (i. e. the same 2D finite 

element analysis using Matlab). It is 

important to define the type of PC that is 

used and its CPU and memory 

specifications to make time readings 

more realistic. HP computer with 

INTEL Core 2 Duo CPU 2.01GHZ and 

2 GB of RAM is used here. Table.2 

shows the difference between each of 

these methods in compliance, time and 

resulted shape.  

     Fig. 14 shows that the compliance 

values in each method almost near and 

equal except the HCA method which 

shows that with increasing the number 

of elements, the compliance increase 

than other methods. It indicates that this 

method will not be a practical method. 

Fig. 15 shows a large difference in the 

time consumed from one method to 

another. At the beginning with a small 

number of elements, it is observed that 

the time consumed in all methods is 

almost equal. But with increasing the 

number of elements, the method of SQP 

results in a large increase in the 

consumed time which makes this 

method totally impractical. 

     MMA method comes the second 

method in consumed time after SQP 

method, as shown in Fig. 15. The time 

that MMA method consumes with 

30x30 elements is 20 minutes, while 

SQP method consumes 199 minutes. 

While at 50x50 elements MMA method 

consumes 80 minutes, despites SQP 

method that consumes more than 25 

hours and does not give the final 

optimum solution because it becomes 

out of memory of CPU. 
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Table.2 Difference 

in time consumed, 

compliance, and 

resulted shape 

between MMA, 

SQP, OC, and HCA  

methods 
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Fig. 14. Difference in compliance between MMA, 

SQP, OC, and HCA 

 

Fig. 15 Difference in time consuming between 

MMA, SQP, OC, and HCA 

Also, if we wish to compare the 

HCA with OC method, it is 

observed that HCA is faster than the 

last one in convergence and 

reaching the optimum solution and 

gives minimum compliance values 

for the small number of elements 

but with increasing this number we 

can notice from Fig. 14 that HCA 

gives high compliance values than 

other methods. 

The HCA and OC methods 

considered as non general 

optimization methods and cannot be 

used for any optimization problem, 

while the SQP and MMA methods 

are considered as general 

optimization methods and handle 

any objective function and any 

number of constraints. 

If we wish to change the objective 

function from the compliance 

minimization to any other objective 

function in this case, MMA method 

will be the most suitable and 

general optimization method. 

9. CONCLUSIONS 

a. This paper has investigated the 

topology optimization using the 

method of moving asymptotes and 

other methods and shows the 

difference between them. 

 

b. The method of moving asymptotes is 

considered as a general and flexible 

method for structural topology 

optimization problems, it can handle 

any type of optimization problems. 

This paper shows that the MMA is 

the most convenient optimization 

method for any type of objective 

function and any number of 

constraints equations and also 

reaches the optimum solution with a 

minimum time. 

 

c. Using the method of moving 

asymptotes let the one control the 

convergence, stability and speed of 

the optimization process. 

 

d. With increasing the number of 

elements, the range of asymptotes 

should be increased to save much 

time. The recommended range of 

asymptotes that can be make the 

convergence stable as indicated in 

eqn. 11 is from 100 to 1200. 
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